P i

IS311 Programming Concepts

AVA

Exception Handling
ANSAIANISANHALSNA

£ o

Introduction

e Users have high expectations for the
code we produce.

e Users will use our programs in
unexpected ways.

e Due to design errors or coding errors,
our programs may fail in unexpected
ways during execution

Introduction

e It is our responsibility to produce
quality code that does not fail
unexpectedly.

e Consequently, we must design error
handling into our programs.

Errors and Error Handling

e An Error is any unexpected result obtained
from a program during execution.

e Unhandled errors may manifest themselves
as incorrect results or behavior, or as
abnormal program termination.

e Errors should be handled by the
programmer, to prevent them from reaching
the user.

Errors and Error Handling

e Some typical causes of errors:

- Memory errors (i.e. memory incorrectly
allocated, memory leaks, “null pointer”)

- File system errors (i.e. disk is full, disk has
been removed)

- Network errors (i.e. network is down, URL
does not exist)

— Calculation errors (i.e. divide by 0)

Errors and Error Handling

e More typical causes of errors:
- Array errors (i.e. accessing element -1)

- Conversion errors (i.e. convert 'q’ to a
number)

— Can you think of some others?

Errors and Error Handling

e Traditional Error Handling

- 1. Every method returns a value (flag) indicating
either success, failure, or some error condition.
The calling method checks the return flag and
takes appropriate action.

- Downside: programmer must remember to
always check the return value and take
appropriate action. This requires much code
(methods are harder to read) and something may
get overlooked.

Errors and Error Handling

e Exceptions - a better error handling

- Exceptions are a mechanism that provides the
best of both worlds.

- Exceptions act similar to method return flags in
that any method may raise and exception should
it encounter an error.

- Exceptions act like global error methods in that
the exception mechanism is built into Java;
exceptions are handled at many levels in a
program, locally and/or globally.

Exceptions and JVM

e When an exception takes place, the
Java Virtual Machine (JVM) creates an

exception object to identify the type of

exemption that occurred

e The Throwable class is the super class
of all error and exception types

generated by the JVM or Java programs

e Three Throwable subclass categories
are possible: Error, Runtime and
Nonruntime Exceptions

10

Exceptions Hierarchy

| Throwable |
Error Exception
|V|rtua|Mach|neError | RuntimeException
(nonruntlme Exceptlons)
KKK
ArithmeticException | |NuIIPointerException | | ClassCastException

**kx qanefiedafidn ueldnanda
pananszunsFunaunafiedidaiianainiiause Tusunsuvineslsealyila

2 type of Exceptions

e Checked: are the exceptions that are

11

checked at compile time. Checked exceptions

must be handled or declared otherwise it
causes compile time error.

e Unchecked: are the exceptions that are not
checked at compiled time. No need to
handled or declared unchecked exceptions,
they wont’t cause any compile time error.

ﬂma‘naﬂmﬂ‘tmﬂma RuntlmeExceonn
Lﬂuﬂmauuu unchecked M3idu 15192158U
N133ANT3 exception mwsUﬂmasluﬂquu

12
The try catch finally statement

try {
// en&sdnag fidesmauszataneliifedsfialnd
} catch (ExceptionTypel e) {
/ / isildsamadlafinfsfialndsiia ExceptionTypel
} catch (ExceptionTypelZ e) {
/ / sdsfildTansidlaiefifindsndsfia ExceptionType?
throw e; // lwusAiadsnaldlwSouiand e Sansdasnnaa
} finally {

o Ql/ ldl v o [a ta‘ a a a g A 1 &
// ATRINADINILRND VLN'J’WSLﬂﬂﬁGNﬂﬂiﬂ@l“ﬁ%ﬂhﬂ‘ﬂ%%iavmﬂﬂﬂw

13

Keywords for Java Exceptions

throws (1#nauiszanmunen)
Describes the exceptions which can be raised by a method.

throw
Raises an exception to the first available handler in the call
stack, unwinding the stack along the way.

try
Marks the start of a block associated with a set of exception
handlers.

catch

If the block enclosed by the try generates an exception of this
type, control moves here.

finally

Always called when the try block concludes, and after any
necessary catch handler is complete.

14

Exception-Handling Mechanism

1. Mechanism for creating special exception classes
(whose instances are called exception objects)

2. The statement throw e is used to signal the
occurrence of an exception and return control to
the calling method and e refers to an exception
object

3. The statement try/catch allows the calling
method to “catch” the “thrown” exception object
and take appropriate actions

15

Control Flow and Exceptions

When exception is thrown control returns
through the methods called in reverse calling
order until a try statement is found with a
catch block for the exception

It is possible for a

catch stater_nent to /

d efe r h a n d I I n g Of fuo)zf:;gnz; handler

a n eXCe pti O n by Forwards exception -

i n Cl U d I n a th rOW I;oof;ng”;O; handler
g H Method that has an pproprat ¢

statement of its Gatonessomo_~| 'gcpton andir

o

16

Error & Exception

e Error Class

— Critical error which is not acceptable in
normal application program

+ Exception Class

- Possible exception in normal application
program execution

- Possible to handle by programmer

17

Exception Class Hierarchy

Java has a predefined set of exceptions and errors
that can occur during execution.

’Exception(deﬁved ﬁ0n1Throwable”
|

’RunTimeException‘ ’ClassNotFoundException‘ ’IOException‘

—ﬁArithmeticException‘

Adaualuiien
AR E1NUNFEIULINUY

—%NullPointerException‘

_4IndexOutOfBoundsException‘

_JNumberFormatException‘

AID8N System-Defined Exception

e ArithmeticException :

- When an exceptional arithmetic condition has occurred
* ArrayStoreException :

— When assign object of incorrect type to element of array
e FileNotFoundException :

- 1Anduiilafinns Daududaya udnuduiidaanslainy

* IndexOutOfBoundsException :

— When beyond the bound of index in the object which use index,

such as array, string, and vector

* IllegalMonitorStateException :

— When the thread which is not owner of monitor involves wait or
notify method

18

19

Programmer-Defined Exception
Exceptions raised by programmer

e Check by compiler whether the

exception handler for exception
occurred exists or not

- If there is no handler, it is error

e Sub class of Exception class

Exception Occurrence

e Raised implicitly by system
e Raised explicitly by programmer
- throw Statement

throw ThrowableObject;

its sub class

Throwable class or

20

21

A2D8N System-Defined Exception

* NegativeArraySizeException:
— When using a negative size of array
e NumberFormatException :

- iingaziinntsudasanselu i dudaysaiiadaiae udaaseaglugy
wuud Lt nun s

NullPointerException :

— When refer to object as a null pointer

* SecurityException :
— When violate security. Caused by security manager

22

Coding Exceptions

e Try-Catch Mechanism

- Wherever your code may trigger an
exception, the normal code logic is placed
inside a block of code starting with the
“try” keyword:

- After the try block, the code to handle the
exception should it arise is placed in a
block of code starting with the “catch”
keyword.

23

Coding Exceptions

e Try-Catch Mechanism

-You may also write an optional “finally”
block. This block contains code that is
ALWAYS executed, either after the “try”
block code, or after the “catch” block
code.

- Finally blocks can be used for operations
that must happen no matter what (i.e.
cleanup operations such as closing a file)

24

Exception Example

e The body of a method may call other methods as well as doing

its own calculations

e Here the body of m will execute unless an out-of bounds

exception occurs
void m () {
try {
.. body of m ...
}
catch (ArrayIndexOutOfBoundsException ae) {
.. code to recover from error ...
}
}

26
ArrayIndexOutOfBoundsException Example

class Main {
static void doSomeThing () {
try f{
int arrayl[] = {1,2,3,4,5};
int a=5, b=0;
b = arraylal;
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println ("Error: index out of range");
}
}

public static void main(String [J]args) {

try {
int a=5, b=0, c=0;
doSomeThing () ;
c = a/b;

} catch (ArithmeticException e) {
System.out.println("Error: divide by zero");

}

25
public class Zero {
public static void main(String[] args) {
int numerator = 10;
int denominator = 0;
System.out.println (numerator/denominator) ;
System.out.println ("We never get to this statement. ");
}
}
Exception in thread "main"
java.lang.ArithmeticException: / by zero
at Zero.main(Zero.java:5)
27

nsanduasialsnAvatsrialuuasn try LHBINY

class Main {

public static void main (String

int
int
try

} catch

} catch

}

a=5, b=0, c=0;

array([] = {1,2,3,4,5};
{

b = arraylal;

c = a/b;

System.out.println ("Error:

System.out.println ("Error:

System.out.println(c);

[largs) {

(ArithmeticException e) {

divide by zero");

(ArrayIndexOutOfBoundsException e) {

index out of range");

28

Finally Clause

e When exception is thrown control is
transferred to method containing the catch
block to handle the exception

e Control does not return to procedure in
which the exception was thrown unless it
contains a finally clause

e The finally clause can be used to clean up
the programming environment after the
exceptions has been handled

29

Finally Block

class Main {
public static void main(String [J]args) {
int a=5, b=0, c=0;

int arrayl[] = {1,2,3,4,5};
try {

b = arraylal;

c = a/b;

} catch (ArithmeticException e) {
System.out.println("Error: divide by zero");
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println ("Error: index out of range");
} finally {
System.out.println("Message from finally block");
}

System.out.println ("Message from the line after " +
"the whole try block");

Throwing Exceptions

®You can throw exceptions from your own methods

®To throw an exception, create an instance of the exception
class and "throw" it.

®If you throw checked exceptions, you must indicate which
exceptions your method throws by using the throws
keyword
public void withdraw(float anAmount) throws
InsufficientFundsException
{
if (anAmount<0.0)
throw new IllegalArgumentException (
"Cannot withdraw negative amt");
if (anAmount>balance)
throw new InsuffientFundsException ("Not enough cash");
balance = balance - anAmount;

31

Resource

o a2 Tnandnuazalngne TUsunsy 1589 A5
san1sasanlsna
http://www.bus.tu.ac.th/usr/wanhai/
is311 viNaY lhan

